Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Molecules ; 26(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34443661

RESUMO

Protein methyltransferases are vital to the epigenetic modification of gene expression. Thus, obtaining a better understanding of and control over the regulation of these crucial proteins has significant implications for the study and treatment of numerous diseases. One ideal mechanism of protein regulation is the specific installation of a photolabile-protecting group through the use of photocaged non-canonical amino acids. Consequently, PRMT1 was caged at a key tyrosine residue with a nitrobenzyl-protected Schultz amino acid to modulate protein function. Subsequent irradiation with UV light removes the caging group and restores normal methyltransferase activity, facilitating the spatial and temporal control of PRMT1 activity. Ultimately, this caged PRMT1 affords the ability to better understand the protein's mechanism of action and potentially regulate the epigenetic impacts of this vital protein.


Assuntos
Epigênese Genética/efeitos da radiação , Proteínas Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/genética , Proteínas Repressoras/genética , Sequência de Aminoácidos/genética , Aminoácidos , Epigênese Genética/genética , Expressão Gênica/efeitos da radiação , Humanos , Metilação/efeitos da radiação , Proteínas Metiltransferases/efeitos da radiação , Proteína-Arginina N-Metiltransferases/efeitos da radiação , Proteínas Repressoras/efeitos da radiação , Fatores de Transcrição/genética , Tirosina/química , Raios Ultravioleta
2.
Hepatology ; 74(3): 1339-1356, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33638162

RESUMO

BACKGROUND AND AIMS: The dynamic N6-methyladenosine (m6 A) mRNA modification is essential for acute stress response and cancer progression. Sublethal heat stress from insufficient radiofrequency ablation (IRFA) has been confirmed to promote HCC progression; however, whether m6 A machinery is involved in IRFA-induced HCC recurrence remains open for study. APPROACH AND RESULTS: Using an IRFA HCC orthotopic mouse model, we detected a higher level of m6 A reader YTH N6-methyladenosine RNA binding protein 1-3 (YTHDF1) in the sublethal-heat-exposed transitional zone close to the ablation center than that in the farther area. In addition, we validated the increased m6 A modification and elevated YTHDF1 protein level in sublethal-heat-treated HCC cell lines, HCC patient-derived xenograft (PDX) mouse model, and patients' HCC tissues. Functionally, gain-of-function/loss-of-function assays showed that YTHDF1 promotes HCC cell viability and metastasis. Knockdown of YTHDF1 drastically restrains the tumor metastasis evoked by sublethal heat treatment in tail vein injection lung metastasis and orthotopic HCC mouse models. Mechanistically, we found that sublethal heat treatment increases epidermal factor growth receptor (EGFR) m6 A modification in the vicinity of the 5' untranslated region and promotes its binding with YTHDF1, which enhances the translation of EGFR mRNA. The sublethal-heat-induced up-regulation of EGFR level was further confirmed in the IRFA HCC PDX mouse model and patients' tissues. Combination of YTHDF1 silencing and EGFR inhibition suppressed the malignancies of HCC cells synergically. CONCLUSIONS: The m6 A-YTHDF1-EGFR axis promotes HCC progression after IRFA, supporting the rationale for targeting m6 A machinery combined with EGFR inhibitors to suppress HCC metastasis after RFA.


Assuntos
Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/cirurgia , Processamento Pós-Transcricional do RNA/efeitos da radiação , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/efeitos da radiação , Ablação por Radiofrequência/efeitos adversos , Animais , Carcinoma Hepatocelular/genética , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Receptores ErbB/genética , Receptores ErbB/metabolismo , Receptores ErbB/efeitos da radiação , Regulação Neoplásica da Expressão Gênica , Resposta ao Choque Térmico/efeitos da radiação , Humanos , Neoplasias Hepáticas/genética , Metilação/efeitos da radiação , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Falha de Tratamento
3.
Toxicol In Vitro ; 70: 105037, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33148527

RESUMO

Lung cancer patients who have undergone radiotherapy developed severe complications such as pneumonitis and fibrosis. Upon irradiation, epithelial cells acquire mesenchymal phenotype via a process called epithelial to mesenchymal transition (EMT), which plays a vital role in organ fibrosis. Several mechanisms have been studied on EMT, however, the correlation between radiation-induced EMT and epigenetic changes are not well known. In the present study, we investigated the role of histone methyltransferase G9a on radiation-induced EMT signaling. There was an increase in total global histone methylation level in irradiated epithelial cells. Western blot analysis on irradiated cells showed an increased expression of H3K9me2/3. The pre-treatment of G9a inhibitor enhanced E-cadherin expression and decreased the mesenchymal markers like N-cadherin, vimentin in the radiated group. Surprisingly, radiation-induced ROS generation and pERK1/2 levels were also inhibited by G9a inhibitor BIX01294, which is showing its antioxidant potential. The ChIP-qPCR analysis on the E-cadherin promoter suggested that G9a and Snail might have formed complex to enrich suppressive marker H3K9me2/3. On the whole, our present study suggested that 1] ROS could modify H3K9 methylation via G9a and promote radiation-induced lung EMT in Beas2B and A549 cells 2] E-cadherin promoter enrichment with heterochromatin mark H3K9me2 expression upon irradiation could be modified by regulating G9a methyltransferase.


Assuntos
Células Epiteliais/efeitos da radiação , Transição Epitelial-Mesenquimal/efeitos da radiação , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Raios X , Azepinas/farmacologia , Caderinas/genética , Linhagem Celular , Movimento Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Pulmão/citologia , Metilação/efeitos da radiação , Regiões Promotoras Genéticas , Quinazolinas/farmacologia , Transdução de Sinais/efeitos da radiação
4.
Free Radic Res ; 54(7): 540-555, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32842802

RESUMO

Radiotherapy is an important treatment regime for lung cancer, worldwide. However, radiation-induced pneumonitis and fibrosis are the treatment-limiting toxicities among patients who have undergone radiotherapy. The epithelial cells via epithelial to mesenchymal transition [EMT] acquires mesenchymal phenotype, which ultimately leads to fibrosis. Many investigations are focussed on understanding the signalling pathways mediating in EMT, however, the role of histone methylation is less understood in radiation-induced lung EMT. In the present study, we analysed the effect of vanillin, an antioxidant, on histone methylation during radiation-induced EMT. The thoracic region of Wistar rats was irradiated with a fractionated dose of X-ray (3 Gy/day) for two weeks (total of 30 Gy). The irradiated animals were sacrificed at the 8th and 16th weeks and tissues were used for analyses. Our data showed that radiation decreased the level of antioxidant enzymes such as SOD, catalase and reduced glutathione that would ultimately enhance oxidative stress in the tissues. Histopathological analysis revealed that radiation increased the infiltration of inflammatory cells to the tissue injury site. Total global histone methylation was increased upon irradiation, which was effectively prevented by vanillin administration. Vanillin enhanced E-cadherin expression and decreased the mesenchymal markers N-cadherin and vimentin in the irradiated lung tissue. The ChIP-qPCR analysis suggested that snail expression in the nucleus might involve in the enrichment of suppressive marker H3K9me3 on the E-cadherin promoter. Finally, we suggested that vanillin administration decreased radiation-induced oxidative stress and EMT expression. Additionally, irradiation increased the H3K9 methylation status with nuclear translocation of snail during lung EMT.


Assuntos
Antígenos CD/metabolismo , Benzaldeídos/metabolismo , Caderinas/metabolismo , Histonas/metabolismo , Pulmão/efeitos da radiação , Células A549 , Animais , Antígenos CD/genética , Caderinas/genética , Transição Epitelial-Mesenquimal , Feminino , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Metilação/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Regiões Promotoras Genéticas , Ratos , Ratos Wistar
5.
Electromagn Biol Med ; 39(2): 139-153, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32151171

RESUMO

In this study, we investigated the effects of specific low-frequency electromagnetic field sequences on U937 cells, an in vitro model of human monocyte/macrophage differentiation. U937 cells were exposed to electromagnetic stimulation by means of the SynthéXer system using two similar sequences, XR-BC31 and XR-BC31/F. Each sequence was a time series of 29 wave segments, equal to a total duration of 77 min. Here, we report that exposure (4 d, once a day) of U937 cells to the XR-BC31 setting, but not to the XR-BC31/F, resulted in increased expression of the histone demethylase KDM6B along with a global reduction in histone H3 lysine 27 tri-methylation (H3K27me3). Furthermore, exposure to the XR-BC31 sequence induced differentiation of U937 cells towards a macrophage-like phenotype displaying a KDM6B dependent increase in expression and secretion of the anti-inflammatory interleukins (ILs), IL-10 and IL-4. Importantly, all the observed changes were highly dependent on the nature of the sequence. Our results open a new way of interpretation for the effects of low-frequency electromagnetic fields observed in vivo. Indeed, it is conceivable that a specific low-frequency electromagnetic fields treatment may cause the reprogramming of H3K27me3 and cell differentiation.


Assuntos
Campos Eletromagnéticos , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Histona Desmetilases com o Domínio Jumonji/genética , Ciclo Celular/efeitos da radiação , Histonas/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Metilação/efeitos da radiação , Fenótipo , Células U937
6.
Cells ; 9(2)2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033081

RESUMO

The DNA damage response is mediated by both DNA repair proteins and epigenetic markers. Here, we observe that N6-methyladenosine (m6A), a mark of the epitranscriptome, was common in RNAs accumulated at UV-damaged chromatin; however, inhibitors of RNA polymerases I and II did not affect the m6A RNA level at the irradiated genomic regions. After genome injury, m6A RNAs either diffused to the damaged chromatin or appeared at the lesions enzymatically. DNA damage did not change the levels of METTL3 and METTL14 methyltransferases. In a subset of irradiated cells, only the METTL16 enzyme, responsible for m6A in non-coding RNAs as well as for splicing regulation, was recruited to microirradiated sites. Importantly, the levels of the studied splicing factors were not changed by UVA light. Overall, if the appearance of m6A RNAs at DNA lesions is regulated enzymatically, this process must be mediated via the coregulatory function of METTL-like enzymes. This event is additionally accompanied by radiation-induced depletion of 2,2,7-methylguanosine (m3G/TMG) in RNA. Moreover, UV-irradiation also decreases the global cellular level of N1-methyladenosine (m1A) in RNAs. Based on these results, we prefer a model in which m6A RNAs rapidly respond to radiation-induced stress and diffuse to the damaged sites. The level of both (m1A) RNAs and m3G/TMG in RNAs is reduced as a consequence of DNA damage, recognized by the nucleotide excision repair mechanism.


Assuntos
Adenosina/análogos & derivados , RNA não Traduzido/metabolismo , RNA/metabolismo , Raios Ultravioleta , Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Cromatina/metabolismo , Dano ao DNA , Desmetilação do DNA/efeitos da radiação , Metilação de DNA/genética , Metilação de DNA/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Guanosina/análogos & derivados , Guanosina/metabolismo , Metilação/efeitos da radiação , Camundongos , Estresse Fisiológico/efeitos da radiação
7.
Nucleic Acids Res ; 48(4): 1652-1668, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31930303

RESUMO

The excision of mutagenic DNA adducts by the nucleotide excision repair (NER) pathway is essential for genome stability, which is key to avoiding genetic diseases, premature aging, cancer and neurologic disorders. Due to the need to process an extraordinarily high damage density embedded in the nucleosome landscape of chromatin, NER activity provides a unique functional caliper to understand how histone modifiers modulate DNA damage responses. At least three distinct lysine methyltransferases (KMTs) targeting histones have been shown to facilitate the detection of ultraviolet (UV) light-induced DNA lesions in the difficult to access DNA wrapped around histones in nucleosomes. By methylating core histones, these KMTs generate docking sites for DNA damage recognition factors before the chromatin structure is ultimately relaxed and the offending lesions are effectively excised. In view of their function in priming nucleosomes for DNA repair, mutations of genes coding for these KMTs are expected to cause the accumulation of DNA damage promoting cancer and other chronic diseases. Research on the question of how KMTs modulate DNA repair might pave the way to the development of pharmacologic agents for novel therapeutic strategies.


Assuntos
Cromatina/genética , Dano ao DNA/genética , Histona Metiltransferases/genética , Histonas/genética , Cromatina/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Instabilidade Genômica/genética , Instabilidade Genômica/efeitos da radiação , Histona Metiltransferases/química , Metilação/efeitos da radiação , Nucleossomos/genética , Nucleossomos/efeitos da radiação , Saccharomyces cerevisiae/genética , Transdução de Sinais/efeitos da radiação , Raios Ultravioleta
8.
Cell Biochem Funct ; 38(3): 283-289, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31943290

RESUMO

Based on central dogma of genetics, protein is the embodiment and executor of genetic function, post-translational modifications (PTMs) of protein are particularly important and involved in almost all aspects of cell biology and pathogenesis. Studies have shown that ionizing radiation (IR) alters gene expression much more profoundly and a broad variety of cell-process pathways, lots of proteins are modified and activated. Our understanding of the protein in response to ionizing radiation is steadily increasing. Among the various biological processes known to induce radioresistance, PTMs have attracted marked attention in recent years. The present review summarizes the latest knowledge about how PTMs response to ionizing radiation and pathway analysis were conducted. The data provided insights into biological effects of IR and contributing to the development of novel IR-based strategies.


Assuntos
Processamento de Proteína Pós-Traducional/efeitos da radiação , Proteínas/efeitos da radiação , Radiação Ionizante , Motivos de Aminoácidos , Dano ao DNA/efeitos da radiação , Genoma Humano/efeitos da radiação , Glicosilação/efeitos da radiação , Humanos , Metilação/efeitos da radiação , Neoplasias/radioterapia , Fosforilação/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Ubiquitinação/efeitos da radiação
9.
Balkan Med J ; 36(5): 283-286, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31199091

RESUMO

Aims: To analyze the clinical relevance of O6-methylguanine-DNA methyltransferase in rectal adenocarcinoma treated with chemoradiotherapy followed by surgery. Methods: Tissue samples from 29 rectal adenocarcinoma patients were obtained after chemoradiotherapy. O6-methylguanine-DNA methyltransferase promoter methylation status was established by methylation-specific polymerase chain reaction. O6-methylguanine-DNA methyltransferase protein levels were determined by immunohistochemistry. Clinicopathologic variables, including treatment regression grade, recurrence, lymph node invasion, and stage and differentiation grade of the tumor, were determined. Results: The O6-methylguanine-DNA methyltransferase gene promoter was methylated in 81.5% of samples. Most patients (88.9%) showed low O6-methylguanine-DNA methyltransferase protein expression. O6-methylguanine-DNA methyltransferase methylation status was not correlated with any of the clinicopathological variables determined in rectal adenocarcinomas selected for chemoradiotherapy. Conclusion: O6-methylguanine-DNA methyltransferase methylation status is not correlated with clinicopathologic variables examined in rectal adenocarcinoma selected for chemoradiotherapy, although its role as a biomarker awaits further investigation.


Assuntos
Metilação/efeitos dos fármacos , Metilação/efeitos da radiação , O(6)-Metilguanina-DNA Metiltransferase/análise , Neoplasias Retais/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimiorradioterapia/métodos , Feminino , Humanos , Imuno-Histoquímica/métodos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos , Estudos Prospectivos , Neoplasias Retais/patologia , Neoplasias Retais/cirurgia , Recidiva
10.
J Am Chem Soc ; 141(17): 6853-6858, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30983333

RESUMO

Copper oxidative addition into organohalides is a challenging two-electron process. In contrast, formal oxidative addition of copper to Csp2 carbon-bromine bonds can be accomplished by employing latent silyl radicals under photoredox conditions. This novel paradigm for copper oxidative addition has now been applied to a Cu-catalyzed cross-coupling of Csp3-bromides. Specifically, a copper/photoredox dual catalytic system for the coupling of alkyl bromides with trifluoromethyl groups is presented. This operationally simple and robust protocol successfully converts a variety of alkyl, allyl, benzyl, and heterobenzyl bromides into the corresponding alkyl trifluoromethanes.


Assuntos
Cobre/química , Hidrocarbonetos Bromados/química , Hidrocarbonetos Fluorados/síntese química , Catálise/efeitos da radiação , Complexos de Coordenação/química , Complexos de Coordenação/efeitos da radiação , Cobre/efeitos da radiação , Irídio/química , Irídio/efeitos da radiação , Luz , Metilação/efeitos da radiação , Estrutura Molecular , Oxirredução
11.
PLoS One ; 14(2): e0212123, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30759148

RESUMO

Ionizing radiation is a recognized genotoxic agent, however, little is known about the role of the functional form of DNA in these processes. Post translational modifications on histone proteins control the organization of chromatin and hence control transcriptional responses that ultimately affect the phenotype. The purpose of this study was to investigate effects on chromatin caused by ionizing radiation in fish. Direct exposure of zebrafish (Danio rerio) embryos to gamma radiation (10.9 mGy/h for 3h) induced hyper-enrichment of H3K4me3 at the genes hnf4a, gmnn and vegfab. A similar relative hyper-enrichment was seen at the hnf4a loci of irradiated Atlantic salmon (Salmo salar) embryos (30 mGy/h for 10 days). At the selected genes in ovaries of adult zebrafish irradiated during gametogenesis (8.7 and 53 mGy/h for 27 days), a reduced enrichment of H3K4me3 was observed, which was correlated with reduced levels of histone H3 was observed. F1 embryos of the exposed parents showed hyper-methylation of H3K4me3, H3K9me3 and H3K27me3 on the same three loci, while these differences were almost negligible in F2 embryos. Our results from three selected loci suggest that ionizing radiation can affect chromatin structure and organization, and that these changes can be detected in F1 offspring, but not in subsequent generations.


Assuntos
Raios gama/efeitos adversos , Loci Gênicos/efeitos da radiação , Código das Histonas/efeitos da radiação , Salmo salar/genética , Peixe-Zebra/genética , Animais , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/efeitos da radiação , Gametogênese/efeitos da radiação , Loci Gênicos/genética , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Metilação/efeitos da radiação , Salmo salar/embriologia , Salmo salar/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia
12.
Chem Commun (Camb) ; 54(97): 13662-13665, 2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30382250

RESUMO

Fluoroalkylated enaminones, such as trifluridine and 5-trifluoromethyluracil, have widespread applications in pharmaceuticals and agrochemicals. Although these kinds of pharmaceutical agent often bear CF3 and perfluoroalkyl motifs in the core structure, access to such analogues typically requires multi-step synthesis. Here, we report a mild, metal-free and operationally simple strategy for the direct perfluoroalkylation of uracils, cytosines and pyridinones through a visible-light induced pathway from perfluoroalkyl iodides. This photochemical transformation features synthetic simplicity, mild reaction conditions without any photoredox catalyst, and high functional group tolerance, providing a facile route for applications in medicinal chemistry.


Assuntos
Citosina/química , Hidrocarbonetos Fluorados/síntese química , Luz , Uracila/química , Alquilação/efeitos da radiação , Hidrocarbonetos Fluorados/química , Metilação/efeitos da radiação , Estrutura Molecular
13.
Br J Radiol ; 91(1091): 20170949, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29888979

RESUMO

Radiobiology research is building the foundation for applying genomics in precision radiation oncology. Advances in high-throughput approaches will underpin increased understanding of radiosensitivity and the development of future predictive assays for clinical application. There is an established contribution of genetics as a risk factor for radiotherapy side effects. An individual's radiosensitivity is an inherited polygenic trait with an architecture that includes rare mutations in a few genes that confer large effects and common variants in many genes with small effects. Current thinking is that some will be tissue specific, and future tests will be tailored to the normal tissues at risk. The relationship between normal and tumor cell radiosensitivity is poorly understood. Data are emerging suggesting interplay between germline genetic variation and epigenetic modification with growing evidence that changes in DNA methylation regulate the radiosensitivity of cancer cells and histone acetyltransferase inhibitors have radiosensitizing effects. Changes in histone methylation can also impair DNA damage response signaling and alter radiosensitivity. An important effort to advance radiobiology in the genomic era was establishment of the Radiogenomics Consortium to enable the creation of the large radiotherapy cohorts required to exploit advances in genomics. To address challenges in harmonizing data from multiple cohorts, the consortium established the REQUITE project to collect standardized data and genotyping for ~5,000 patients. The collection of detailed dosimetric data is important to produce validated multivariable models. Continued efforts will identify new genes that impact on radiosensitivity to generate new knowledge on toxicity pathogenesis and tests to incorporate into the clinical decision-making process.


Assuntos
Genômica/tendências , Oncologia/tendências , Radiobiologia/tendências , Acetilação/efeitos da radiação , Citocinas/fisiologia , Metilação de DNA/genética , Epigênese Genética/genética , Previsões , Marcadores Genéticos/genética , Histona Acetiltransferases/genética , Humanos , Metilação/efeitos da radiação , Neoplasias/genética , Neoplasias/radioterapia , Medicina de Precisão/tendências , Tolerância a Radiação/genética , Microambiente Tumoral/genética , Microambiente Tumoral/efeitos da radiação
14.
Mol Cancer Ther ; 17(5): 1070-1078, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29483212

RESUMO

The processes mediating the repair of DNA double-strand breaks (DSB) are critical determinants of radiosensitivity and provide a source of potential targets for tumor radiosensitization. Among the events required for efficient DSB repair are a variety of post-translational histone modifications, including methylation. Because trimethylation of histone H3 on lysine 27 (H3K27me3) has been associated with chromatin condensation, which can influence DSB repair, we determined the effects of radiation on H3K27me3 levels in tumor and normal cell lines. Irradiation of tumor cells resulted in a rapid loss of H3K27me3, which was prevented by the siRNA-mediated knockdown of the H3K27 demethylase UTX. Knockdown of UTX also enhanced the radiosensitivity of each tumor cell line. Treatment of tumor cells with the H3K27 demethylase inhibitor GSKJ4 immediately before irradiation prevented the radiation-induced decrease in H3K27me3 and enhanced radiosensitivity. As determined by neutral comet analysis and γH2AX expression, this GSKJ4 treatment protocol inhibited the repair of radiation-induced DSBs. Consistent with in vitro results, treatment of mice bearing leg tumor xenografts with GSKJ4 significantly enhance radiation-induce tumor growth delay. In contrast with results generated from tumor cell lines, radiation had no effect on H3K27me3 levels in normal fibroblast cell lines and GSKJ4 did not enhance their radiosensitivity. These data suggest that H3K27me3 demethylation contributes to DSB repair in tumor cells and that UTX, the demethylase responsible, provides a target for selective tumor cell radiosensitization. Mol Cancer Ther; 17(5); 1070-8. ©2018 AACR.


Assuntos
Histona Desmetilases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Proteínas Nucleares/metabolismo , Tolerância a Radiação/efeitos da radiação , Células A549 , Benzazepinas/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/genética , Humanos , Metilação/efeitos dos fármacos , Metilação/efeitos da radiação , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Pirimidinas/farmacologia , Interferência de RNA , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética
15.
Nature ; 543(7646): 573-576, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28297716

RESUMO

Cell proliferation and survival require the faithful maintenance and propagation of genetic information, which are threatened by the ubiquitous sources of DNA damage present intracellularly and in the external environment. A system of DNA repair, called the DNA damage response, detects and repairs damaged DNA and prevents cell division until the repair is complete. Here we report that methylation at the 6 position of adenosine (m6A) in RNA is rapidly (within 2 min) and transiently induced at DNA damage sites in response to ultraviolet irradiation. This modification occurs on numerous poly(A)+ transcripts and is regulated by the methyltransferase METTL3 (methyltransferase-like 3) and the demethylase FTO (fat mass and obesity-associated protein). In the absence of METTL3 catalytic activity, cells showed delayed repair of ultraviolet-induced cyclobutane pyrimidine adducts and elevated sensitivity to ultraviolet, demonstrating the importance of m6A in the ultraviolet-responsive DNA damage response. Multiple DNA polymerases are involved in the ultraviolet response, some of which resynthesize DNA after the lesion has been excised by the nucleotide excision repair pathway, while others participate in trans-lesion synthesis to allow replication past damaged lesions in S phase. DNA polymerase κ (Pol κ), which has been implicated in both nucleotide excision repair and trans-lesion synthesis, required the catalytic activity of METTL3 for immediate localization to ultraviolet-induced DNA damage sites. Importantly, Pol κ overexpression qualitatively suppressed the cyclobutane pyrimidine removal defect associated with METTL3 loss. Thus, we have uncovered a novel function for RNA m6A modification in the ultraviolet-induced DNA damage response, and our findings collectively support a model in which m6A RNA serves as a beacon for the selective, rapid recruitment of Pol κ to damage sites to facilitate repair and cell survival.


Assuntos
Dano ao DNA/efeitos da radiação , Metilação , RNA/química , RNA/metabolismo , Raios Ultravioleta , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Biocatálise/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Reparo do DNA/efeitos da radiação , Replicação do DNA/efeitos da radiação , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Metilação/efeitos da radiação , Metiltransferases/deficiência , Metiltransferases/metabolismo , Camundongos , Poli A/metabolismo , RNA/efeitos da radiação , Fase S/efeitos da radiação
16.
Environ Toxicol Chem ; 36(6): 1493-1502, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27859609

RESUMO

The present study examined potential effects of seasonal variations in photoreactive dissolved organic matter (DOM) on methylmercury (MeHg) photodemethylation rates in freshwaters. A series of controlled experiments was carried out using natural and photochemically preconditioned DOM in water collected from 1 lake in June, August, and October. Natural DOM concentrations doubled between June and August (10.2-21.2 mg C L-1 ) and then remained stable into October (19.4 mg C L-1 ). Correspondingly, MeHg concentrations peaked in August (0.42 ng L-1 ), along with absorbances at 350 nm and 254 nm. Up to 70% of MeHg was photodemethylated in the short 48-h irradiation experiments, with June having significantly higher rates than the other sampling months (p < 0.001). Photodemethylation rate constants were not affected by photoreactive DOM, nor were they affected by initial MeHg concentrations (p > 0.10). However, MeHg photodemethylation efficiencies (quantified in moles MeHg lost/moles photon absorbed) were higher in treatments with less photoreactive DOM. Congruently, MeHg photodemethylation efficiencies also decreased over summer by up to 10 times across treatments in association with increased photoreactive DOM, and were negatively correlated with DOM concentration. These results suggest that an important driver of MeHg photodemethylation is the interplay between MeHg and DOM, with greater potential for photodemethylation in freshwaters with more photobleached DOM and lower DOM content. Environ Toxicol Chem 2017;36:1493-1502. © 2016 SETAC.


Assuntos
Água Doce/análise , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Lagos/química , Luz , Metilação/efeitos da radiação , Compostos de Metilmercúrio/química , Estações do Ano , Espectrofotometria Atômica , Poluentes Químicos da Água/química
17.
Bioresour Technol ; 218: 718-22, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27420159

RESUMO

A new two-step lignin depolymerization strategy was developed, in which the benzylic alcohols in lignin was methylated under microwave irradiation, followed by a hydrogenolysis for the cleavage of ßO4 bond with Pd/C as the catalyst. The results showed that an efficient and selective catalytic methylation of benzylic alcohols was achieved with various lignin model compounds, and the acidic environment promoted the methylation of benzylic alcohol. Methylation of benzylic alcohol increased the ßO4 bond cleavage rate by 55.9%, and improved products selectivity. Preliminary study of lignin depolymerization illustrated that methylation pretreatment of benzylic alcohols facilitated lignin depolymerization to produce aromatic monomers and reduced the oxygen content of aromatic monomers.


Assuntos
Álcoois Benzílicos/química , Lignina/química , Micro-Ondas , Polimerização , Catálise/efeitos da radiação , Lignina/efeitos da radiação , Metilação/efeitos da radiação , Oxigênio/química , Polimerização/efeitos dos fármacos , Polimerização/efeitos da radiação , Triticum/química
18.
Cell Death Dis ; 7: e2180, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27054335

RESUMO

Cancer is as much an epigenetic disease as it is a genetic disease, and epigenetic alterations in cancer often serve as potent surrogates for genetic mutations. Because the epigenetic factors involved in the DNA damage response are regulated by multiple elements, therapies to target specific components of the epigenetic machinery can be inefficient. In contrast, therapies aimed at inhibiting the methionine cycle can indirectly inhibit both DNA and protein methylation, and the wide variety of genes and pathways that are affected by these methylations make this global strategy very attractive. In the present study, we propose an adjuvant therapy that targets the epigenetics of the DNA damage response in breast cancer cells and that results in efficient apoptosis and a reduction in distant metastases in vivo. We observed that a combined therapy designed to uncouple adenosine metabolism using dipyridamole in the presence of a new synthetic antifolate, 3-O-(3,4,5-trimethoxybenzoyl)-(-)-catechin, simultaneously and efficiently blocked both the folic cycle and the methionine cycle in breast cancer cells and sensitized these cells to radiotherapy. The treatment impeded the recruitment of 53BP1 and BRCA1 to the chromatin regions flanking DNA double-strand breaks and thereby avoided the DNA damage responses in breast cancer cells that were exposed to ionizing radiation. In addition, this hypomethylating therapy was also efficient in reducing the self-renewal capability of breast cancer-initiating cells and induced reversion of mesenchymal phenotypes in breast cancer cells.


Assuntos
Reparo do DNA , Epigênese Genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Proteína BRCA1/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Dipiridamol/metabolismo , Feminino , Antagonistas do Ácido Fólico/farmacologia , Histonas/metabolismo , Humanos , Células MCF-7 , Metilação/efeitos dos fármacos , Metilação/efeitos da radiação , Camundongos , Camundongos Endogâmicos BALB C , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
19.
Clin. transl. oncol. (Print) ; 18(4): 391-397, abr. 2016. tab, ilus, graf
Artigo em Inglês | IBECS | ID: ibc-150454

RESUMO

Purpose: The MGMT gene encodes a DNA repair enzyme that counteracts with chemotherapy efficiency, specifically with alkylating agents such as temozolomide (TMZ). It is well established that MGMT methylation should be screened as a predictive marker for TMZ in glioblastoma, and we thus aimed to determine a reliable and practical diagnostic method of MGMT methylation detection. Patients and methods: 55 glioblastomas were investigated for MGMT methylation status using methylation-specific multiplexed ligation probe amplification (MS-MLPA), illumina human methylation 450K BeadChip array (HM450 K) analysis, and compared to MGMT protein expression by immunohistochemistry (IHC) staining. The methylation status of promoter, intron and all MGMT CpG targeted sites were separately correlated to patient’s survival. Results: In addition to MS-MLPA and 450 K concordance, our results showed significantly higher overall survival (OS) of patients receiving TMZ and presenting MGMT methylated promoter (mean OS = 21.5 months, p = 0.046). Including all glioblastoma cases and regardless of chemotherapy, MS-MLPA showed significant survival difference between MGMT methylated and unmethylated cases (mean OS = 13, p = 0.021). Conclusion: We concluded that in glioblastoma, MGMT promoter methylation predicts TMZ sensitivity. This current comparative analysis leads to consider that MS-MLPA is a valuable as HM450 K array for MGMT methylation status screening (AU)


No disponible


Assuntos
Humanos , Masculino , Feminino , Adulto , Metilação , Metilação/efeitos da radiação , Retinoblastoma/diagnóstico , Retinoblastoma/genética , O(6)-Metilguanina-DNA Metiltransferase , Imuno-Histoquímica/métodos , Imuno-Histoquímica/normas , Imuno-Histoquímica , Sensibilidade e Especificidade , Estimativa de Kaplan-Meier
20.
Clin. transl. oncol. (Print) ; 18(4): 398-404, abr. 2016. tab, graf
Artigo em Inglês | IBECS | ID: ibc-150455

RESUMO

Introduction: The possibility of detection of suppressor genes methylation in circulating free DNA (cf-DNA) of cancer patients and the lack of methylation in healthy individuals makes this epigenetic alternation an ideal diagnostic marker of neoplastic processes. Moreover, hypermethylation in several genes promoter was described as a biomarker of lung cancer. Methylation in the gene encoding doublecortin-like kinase 1 (DCLK1) is observed in patients with colorectal cancer and cholangiocarcinoma. However, there are no studies concerning DCLK1 methylation in lung cancer patients. The aims of the study was to evaluate the frequency of DCLK1 promoter methylation in cf-DNA of lung cancer patients and of healthy persons as well as the usefulness of this test for predicting the lung cancer course. Materials and methods: DCLK1 methylation status was evaluated in DNA isolated from peripheral blood plasma from 65 lung cancer patients and 95 healthy individuals. After DNA bisulfitation, DCLK1 methylation was determined using the qMSP-PCR technique. Moreover, the presence of DCLK1 methylation was correlated with the overall survival (OS) probability of lung cancer patients. Results: DCLK1 promoter methylation was detected in 32 lung cancer patients (49.2 %) and 8 healthy individuals (8.4 %). The methylation of the region before transcription start site (TSS) and the region after TSS of DCLK1 gene was detected in 28 and 11 patients, respectively. In seven cases (10.8 %), the DCLK1 promoter methylation in both regions was reported simultaneously. The methylation was observed slightly frequently in patients with small cell lung cancer (75 % of SCLC patients). The median overall survival of patients with DCLK1 promoter methylation was lower than that of patients without DCLK1 gene modification (p = < 0.001, HR = 4.235). Conclusions: The evaluation of DCLK1 promoter region methylation may be useful in both early diagnosis and prediction of the course of lung cancer (AU)


No disponible


Assuntos
Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metilação , Metilação/efeitos da radiação , Metilação de DNA/genética , Metilação de DNA/efeitos da radiação , Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/genética , Poluição por Fumaça de Tabaco/efeitos adversos , Fumar/efeitos adversos , Fumar/patologia , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...